顶端弯钩乃植物破土而出关键 科学家破解其形成机制
春天,种子发出的嫩芽能够以柔克刚破土而出,让不少人惊叹生命的力量。研究发现,嫩芽顶端的弯钩是其成功出土的关键所在。然而,顶端弯钩的形成机制却困扰了科学家100多年。
“《科学-进展》近日报道了我们关于植物顶端弯钩形成机制的研究成果,我们成功揭示了植物嫩芽顶端弯钩的发育形成机制,系统解答了这一悬而未决的问题。”1月18日,中国科学院遗传与发育生物学研究所研究员李传友告诉科技日报记者。
顶端弯钩的形成本质上是生长素对细胞生长的差异控制
埋在土里的种子发芽后,要想成功破土而出。一方面,需要幼苗的下胚轴通过快速向上生长,获得破土而出的动力;另一方面,需要下胚轴的顶端形成一个称为“顶端弯钩”的结构,将脆弱的子叶和顶端分生组织弯向下生长。
“这种弯曲的结构,既能保证幼苗拥有一个相对坚硬的‘钻头’冲破土壤,又能避免子叶和顶端分生组织在出土过程中与土壤直接冲撞而造成机械损伤。”李传友说,对于绝大多数双子叶植物而言,顶端弯钩的形成是成功出土的关键所在。
早在1881年,达尔文父子就曾对顶端弯钩的形成进行了初步探讨。“之后的140年里,尽管顶端弯钩吸引了无数植物生物学家的研究兴趣,但其具体的发育形成机制一直是植物生物学领域的未解之谜。”李传友强调。
事实上,顶端弯钩是由于下胚轴顶端两侧的细胞差异性生长导致的。生长素的不对称分布是导致这种差异性细胞生长的原因:弯钩内侧高浓度的生长素抑制细胞生长,从而导致内侧细胞生长慢而外侧细胞生长快,使得下胚轴向内弯曲。
因此,“本质上来讲,顶端弯钩的形成是生长素对植物细胞生长的差异性调控问题。”李传友说。
作为一种生长类调节激素,生长素最重要的作用之一是调节植物细胞的生长/大小。生长素对植物细胞大小的调节具有严格的组织和浓度依赖性。李传友介绍,一般来说,高浓度生长素抑制细胞生长,而低浓度生长素促进生长。在生理浓度范围内,生长素在地下部分抑制细胞生长,而在地上部分促进细胞生长,这也是植物的不同器官具有不同重力反应的生理基础。
有趣的是,生长素在下胚轴中促进细胞生长的同时,在顶端弯钩内侧却抑制了细胞生长。它是怎样做到在如此近的部位发挥完全相反的作用呢?
重力是触发幼苗顶端弯钩形成的起始信号
研究人员发现,在幼苗发育的早期,下胚轴中高浓度的生长素抑制细胞生长;之后,随着下胚轴细胞的快速生长和体积变大,高浓度的生长素逐渐被稀释到一个相对较低的浓度,转而促进细胞生长。
“这种生长素导致的由抑制转为促进的生长调控使得下胚轴经历了两个不同的生长阶段,即早期速度慢而晚期速度快。早期的慢速生长恰好为顶端弯钩的形成提供了一个发育窗口。”李传友说,后续研究表明,重力是触发幼苗顶端弯钩形成的起始信号。
李传友进一步解释道,在生长素抑制细胞生长的早期慢速生长阶段,重力诱导高浓度生长素在下胚轴的下侧积累,导致该侧细胞的生长抑制得以加强,而另一侧的生长抑制得以缓解。因此,此时的下胚轴像根一样具有正重力反应而向下弯曲生长,进而启动弯钩的形成。
同时,随着下胚轴细胞由基向顶的快速生长,底部细胞先于顶端细胞生长变大,使得这些细胞内的生长素浓度也先于顶端细胞被稀释到一个相对较低的浓度。这种生长素浓度的降低导致其对细胞生长的调控作用由抑制转变为促进。相应地,下胚轴底部的重力反应也由正变负转而向上直立生长。而顶端细胞因仍具有较高的生长素浓度而保持正重力反应向下弯曲。
“随着越来越多的下胚轴细胞由基向顶地转入直立向上的生长阶段,顶端弯钩获得快速向上的动力,最终帮助幼苗破土而出。”李传友说。
此外,研究人员还揭示了顶端弯钩内侧高浓度生长素抑制细胞生长的分子机制。
对此,李传友表示,这项研究不但揭示了双子叶植物顶端弯钩的形成机制,还提出了一个高浓度生长素抑制细胞生长的分子框架。这些发现极大地扩宽和更新了人们对于植物细胞的生长调控这一基本问题的认知。
责任编辑:孙知兵
免责声明:本文仅代表作者个人观点,与太平洋财富网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如有问题,请联系我们!
- 顶端弯钩乃植物破土而出关键 科学家破解其2022-01-29
- “地球生物基因组计划”开始全面测序2022-01-29
- 让新冠病毒无处遁形!冬奥场馆防疫保障有“2022-01-29
- 超越容错阈值 硅量子计算机保真度获重大突2022-01-29
- 833公里!我国光纤量子密钥分发创世界纪录2022-01-29
- 手性纳米佐剂介导免疫应答 为疫苗研发提供2022-01-29
- “超吸收”量子电池概念得到验证2022-01-29
- 科学家破解中国菰“身世密码”2022-01-29
- 高光度Ia型超新星起源研究取得新进展2022-01-29
- 对刺突蛋白进行分子层面分析 奥密克戎感染2022-01-29
- 3D“最小活细胞”模拟细胞内部运作2022-01-29
- 我国成功研发燃煤锅炉混氨燃烧技术2022-01-29
- 铸就“雪游龙”的“坚强”,它的耐大气腐蚀2022-01-29
- 新型铜催化剂助力二氧化碳变燃料2022-01-29
- 人工遗传回路模拟细胞如何选择“命运”2022-01-29
- 2.4公里!激光稳定传输距离创新纪录2022-01-29
- 化学电阻型气体传感应用研究获进展2022-01-29
- 迄今最强AI专用超级计算机在建2022-01-29
- “以眼观心” 扫描视网膜,AI可知心脏病风险2022-01-29
- 吃完香蕉别扔皮!现能用其制氢气2022-01-29
- 冬奥会人工剖面赛道建造精度实现厘米级2022-01-29
- 光学量子计算模拟时间大幅缩短2022-01-29
- 核聚变研究取得里程碑式突破 美国家点火装2022-01-29
- 科学家开发一种可促进肌腱愈合的新型强力水2022-01-29
- 科学家研究出用激光改造材料的新工艺2022-01-29
- 99.9分!保定企业荣获全省创新创业大赛总冠2022-01-29
- 石家庄市科技局组织召开2021年度大型科研仪2022-01-29
- 邯郸市在第九届河北省创新创业大赛总决赛再2022-01-29
- 海航科技股价上涨9.96%,收盘价为2.76元2022-01-29
- 星湖科技(600866)股价上涨10.10%,收盘价为5.78元2022-01-29
精彩推荐
- 塑料管材龙头上市公司有哪些?相关的有...
- 集成电路设计板块上市公司龙头名单,相...
- 电力自动化概念股有哪些?相关的有中能...
- 2022年基础建设上市公司龙头股有哪些?...
- 智能可穿戴概念上市公司有哪些?相关的...
- 变电概念股有哪些?相关的有桂东电力、*...
- 2022年特种橡胶概念股名单一览,相关的...
- 压缩空气概念股有哪些,相关的有冰山冷...
- 2022年物流业概念股名单一览,相关的有...
- 2022年消化道概念股龙头有哪些,相关的...
- 恒锋信息(300605.SZ)涨逾6%报16.04元,...
- 海晨股份(300873.SZ)午后直线拉升,现报...
- 浩丰科技(300419.SZ)反弹约4%报6.99元,...
- 阳光纸业(2002.HK)今日盘中一度涨13%至2...
- 港股三大指数继续下跌,恒指跌0.84%%报23606点
阅读排行
-
“地球生物基因组计划”开始全面测序
上一篇2022-01-29 14:40:04